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A scaling analysis of measles epidemics in a small
population

C.J.RHODES* anp R. M. ANDERSON

Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road,
Oxford OX1 3PS, U.K.

SUMMARY

We present a detailed analysis of the pattern of measles outbreaks in the small isolated community of the
Faroe Islands. Measles outbreaks in this population are characterized by frequent fade-out of infection
resulting in long intervals when the disease is absent from the islands. Using an analysis of the distribution
of epidemic sizes and epidemic durations we propose that the dynamical structure observed in the measles
case returns reflects the existence of an underlying scaling mechanism. Consequently the dynamics are not
as purely stochastic as is usually thought for epidemiological systems of this sort. We use a lattice-based
epidemic model to provide a theoretical estimate of the scaling exponents and show that a conventional
compartmental sEIR model is unable to reproduce this result. The methods discussed in this paper are
general and represent a novel way to consider the dynamics of any other communicable disease where
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there is frequent fade-out in the case returns.

1. INTRODUCTION

In recent years the study of the population biology of
ecological, epidemiological and immunological systems
has stimulated much discussion into the possible role of
nonlinear effects in population dynamics (May 1976;
May 1987; Olsen et al. 1988; Grenfell 1992; Tidd et al.
1993; Grenfell et al. 1994; Anderson 1994). Many
systems which were previously thought of as noisy limit
cycles or purely stochastic have been re-interpreted as
manifestations of real nonlinear processes at work in
the underlying interacting populations. This has led to
the development of an extensive range of new
mathematical instruments for the analysis of time series
generated when monitoring the prevalence of a
pathogenic agent, or the abundance of a species in an
ecosystem (Sugihara & May 1990; Sugihara et al.
1990). The influence of these ideas has been felt far
beyond biology and now extends into many other areas
of science and engineering (Mullin 1993).

Central to this appraisal of biological dynamics has
been the study of the incidence of measles virus
infection within large urban communities in the
developed world. The extensive and often quite
detailed measles data sets have been compared with a
variety of mathematical models, often based on the
compartmental SEIR structure. Quantities such as
characteristic frequencies sand Liapunov exponents in
observed and stimulated time series have been com-
pared. Such analysis are typically based on trends in
populations where the infection is endemic prior to the
introduction of mass immunization. For measles, the
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critical population size above which chains of trans-
mission can persist is estimated to be around 250—
300,000 individuals (Bartlett 1957, 1960; Black 1966).
Populations smaller than this are subject to frequent
extinctions of the infection only for it to be re-
introduced at a later date when an infective individual
enters the community. In these circumstances the
resulting temporal dynamics are highly irregular and
traditional methods of analysis, such as power spectra
or autocorrelation (Anderson & May 1991), do not
yield useful insight into the epidemiology of the disease.
Bartlett (1957) classified measles epidemics of this
intermittent form as Type IIl epidemics and, until
recently, they have been the subject of somewhat less
theoretical attention than the data sets from popu-
lations larger than the critical community size.

We have recently shown (Rhodes & Anderson
1996 ) that by measuring the distribution of epidemic
sizes and epidemic durations, it is possible to uncover
regularities in the Type III dynamics in small
populations. In this paper we present a full analysis of
the available measles data for the Faroe Islands
showing how the scaling relations can be extracted
from the time-series. We also show how it is possible to
estimate likely epidemic sizes and durations that might
be expected in a given time-interval. The methods we
present are general and can be applied to any
communicable disease where Type 1II dynamics are
observed. Given the success of much recent epidemio-
logical modelling of measles we attempt to recover the
observed dynamics with the results of a frequently used
compartmental measles model. However, it turns out
that for these small populations and fast dynamics it is
not possible to estimate the scaling exponents using this
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type of model, so instead we use a recently introduced
lattice-based model to provide a theoretical estimate of
the exponents.

2. MEASLES EPIDEMICS IN THE FAROE
ISLANDS

Located midway between Scotland and Iceland, the
Faroe Islands are a sparsely population, geographically
isolated cluster of islands. Historically the economy of
the islands has been closely tied to fishing and whaling,
resulting in contacts with European and Icelandic
fishing fleets. There has also been regular trading
contact with Scandinavia and the United Kingdom. It
is believed that these are predominant routes by which
the measles virus has entered the population. The
Faroe Island monthly measles case returns for the years
1912-1969, before mass-vaccination was introduced,
are shown in figure 1 and the intermittent nature of the
epidemics with frequent epidemic fade-out is clear to
see. Due to the small size of the population the
accuracy of these measles records is believed to be high
(CLiff et al. 1993). The extensive morbidity and
occasional mortality that arose during measles epi-
demic outbreaks in the largely susceptible population
meant that few of those manifestating the visible
symptoms of the disease escaped notice. A detailed
study of the epidemiological patterns of measles
infection in many different island and mainland
populations is given in the book by Cliff et al. (1993).

There are 649 months recorded, with measles cases
present in 188 of those months. Looked at in detail
show many consecutive months with no cases present
followed by a rapid outbreak of infection, when an
infected index case arrives in the community. After a
variable period of some months there is a return to an
absence of cases. The smallest of these epidemic
outbreaks has only one reported case, whereas the
largest outbreak recorded 4456 measles cases. In figure
2a is plotted the number of epidemic outbreaks that
commenced in a given month. There appears to be a
slight excess of epidemics that begin between May and
July, but this is to be expected since there would be
more frequent contact with the outside world during
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Figure 1. The IFaroe Island monthly case returns 1912-1969
inclusive.
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the summer months. Also, as shown in figure 24, the
largest epidemic recorded began its course in June,
coinciding with a whaling gathering, though the spread
of epidemic initiations throughout the year is fairly
uniform. The same analysis performed for the epidemic
durations is shown in figure 2¢. Again, the longest
epidemic (though not the largest in terms of total case
numbers) began in June and lasted for the next 20
months, though there is a slight tendency for longer
epidemics to begin between the months of April and
July. Finally, the average number of cases per year to
arise each month is shown in figure 2d. Despite the fact
that the number of epidemic initiations is lower than
during summer, as shown in figure 24, the winter
months record the highest number of cases per month.
This is probably due to the fact that the population is
confined indoors and individuals are in contact longer.
An increase in the case reports in the winter compared
with summer months is a feature that is also observed
in the measles case returns of large urban populations
(Fine & Clarkson 1982).

The time series for the Faroe Islands measles case
returns is composed of many distinct and temporally
separated epidemic events, each with a given size and
duration. We have sought an analysis of the epidemio-
logical record that directly addresses the discrete nature
of these epidemic events, and it appears that simple
power laws govern their size and duration (Rhodes &
Anderson 19965).

3. _.CALING ANALYSIS

Recently it has been demonstrated that the distribution
of epidemic sizes and durations are strongly suggestive
of power-low behaviour. There has been much dis-
cussion concerning the possible emergence of power-
law phenomena in biological systems, particularly with
regard to issues relating to the dynamics of evolution
(Bak & Sneppen 1993; de Boer ¢t al. 1994). Power laws
are characteristic of self-similar (fractal) phenomena,
that is, there is an absence of any particular scale (Bak
et al. 1988; Solé & Manrubia 1995; Solé & Bascompte
1996). If, on the other hand, an exponential type of
distribution is present, then some characteristic scale is
relevant and will dominate the dynamics.

(a) Analytic background

The quantity we wish to calculate is the number of
epidemics of a given size, but because we only have
limited data, we are only able to indirectly calculate
this quantity. Our approach is analogues to that used
in geophysics when studying the dynamics of earth-
quakes (Sornette & Sornette 1989; Chen et al. 1991).
We assume that, in a given time interval, the number
of epidemics of size s, N(s), scales as

N(s)ocs'™ (1)
or, more concisely

N(s) = as™” (2)
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where = 1+454. The short duration of the epidemio-
logical time-series makes this quantity difficult to assess
directly, so instead we calculate the number of
epidemics greater in size than a given size, 5,, namely

N(s>s,) = Jw as?ds (3)

Se

The integration is straightforward, so we can say that
if we observe

c

N(s>s,) = gs”” (4)

then the number of epidemics of size s scales as
N(s) =as™? (5)

From equation 4 if we plot the number of epidemics
greater than a given epidemic size s then we can
estimate the scaling exponent . Taking the logarithm
of equation 4 we have

log N( > s5) = log (%)—blogx (6)

Such a log-log plot allows an estimate of 4 from the
gradient and an estimate of ¢ from the intercept,
allowing a full parameterisation of equation 5.

An identical analysis can be carried out for the
scaling of epidemic durations. Assuming that the
number of epidemics of duration ¢ scales as

Ny oct e (7)

a log-log plot of the number of epidemics of duration
greater than ¢, N( > t), against ¢ allows an estimate of
the scaling exponent c.

We are assuming the existence of a power-law fit to
the data here, but we later show how attempted fits
using an exponential distribution of epidemic event
sizes and durations does not lead such a good
description.

4. COUNTING EPIDEMIC SIZES AND
DURATIONS

In the 58 years of recorded Faroe measles data there
are 43 distinct epidemic outbreaks. An epidemic
outbreak has a duration, ¢, where

U= Topa = Totant (8>

and 7, 1s the first month when cases in an event first
appear and 7,,, is the next mont when there are no
more cases present. An epidemic outbreak can have a
duration of 1 month up to any integer number of

Figure 2. (a) The average number of epidemic outbreaks
occurring each calendar month. (4) Size of the epidemic
outbreaks as a function of the calendar month in which they
began. (¢) Duration of the epidemic outbreaks (in months) as
a function of the calendar month in which they began. (d)
Average number of new measles cases to arise each calendar
month.
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Figure 3. (a) Epidemic size distribution for the Faroe Island
data (log-log plot). The best-fit line shown is calculated so as
only to apply to epidemics up to size 1500. The correlation
for the regression r = —0.908. (b) Epidemic duration dis-
tribution for the Faroe Island data (log-log plot). The best-
fit line shown is calculated so as only to apply to epidemics of
duration up to 10 months, with » = —0.99.

months. Similarly, an epidemic event has a size, s,
where

s= o (9)

Tstart

and C(7) is the number of recorded cases of measles in
the month 7.

In figure 3a is plotted the epidemic size distribution
and, in figure 34, the epidemic duration distribution
on log-log plots. Each of the 43 epidemics is plotted on
these graphs. The scaling law described by equation 4
appears to fit the epidemic size distribution very well.
However, there is a tail-off for epidemics that infect
more than 1500 individuals. This might happen
because, for the very largest epidemics, the dynamics
are fundamentally different from those of the smaller
epidemics, causing either a different exponent to arise,
or a complete breakdown in scaling. Alternatively, it is
possible that due to the infrequent occurrence of the
very largest epidemics, the Faroe Island time series is
not long enough to sample a representative number of
big epidemics. There is, at present, no way to
distinguish between these two hypotheses. What is
certainly trueis that when the largest measles epidemics

Phil. Trans. R. Soc. Lond. B (1996)
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Figure 4. (a) Epidemic size distribution (linear plot) fitted
with power-law (solid line) and exponential (dashed line)
functions. (b) Epidemic duration distribution (linear plot)
fitted with power-law (solid line) and exponential (dashed
line) functions.

occurred in the islands, there would have been enough
time for a modification of behaviour and mixing
patterns to curtail as much as possible spread of the
infection into those regions as yet unaffected by the
disease.

Given the behaviour of the largest epidemics, we can
plot the distribution so that all epidemics greater than
1500 cases are summed together. The gradient of the
best-fit line of this plot gives a value of  ~ 0.27, and
this is shown in figure 3a.

The distribution of the epidemic durations likewise
shows the agreement with scaling, but for the reasons
discussed above, appears to break down for epidemics
longer than 12 months duration. For epidemics longer
than this there is also the possibility of other measles
cases being generated by the next index case to arrive
in the community, raising the possibility of running
two epidemic outbreaks into each other. The best fit
line shown in figure 34 is calculated for the epidemics
up to 10 months in duration. This gives ¢ ~ 0.8.

By way of comparison, we illustrate fits of the data
using power law and exponential functions. Figures 4a
and 44 show the data plotted on a linear scale with the
associated fits. Over the range of data shown, the
power law is much the better fit for the epidemic sizes
and we do not think that an exponential distribution
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can be used to explain the scaling. For the epidemic
durations the power law also appears to be the better
fit over that of the exponential function, though it is
not as clear cut.

We have also demonstrated that the scaling
exponents, & and ¢, in the measles case returns from
Bornholm and Reykjavik are of the same magnitude as
the Faroe Islands (Rhodes & Anderson 19965).

5. MODELLING THE EPIDEMIC
DISTRIBUTIONS

Given the recent achievements in the applied
epidemiological field of modelling the dynamics of
measles infection (Schenzle 1984; Olsen et al. 1988;
Olsen & Schaffer 1990; Anderson & May 1991;
Grenfell 1992; Bolker & Grenfell 1993; Tidd e al.
1993; Grenfell et al. 1994; Boker & Grenfell 1995;
Grenfell et al. 1995) we expect that it should also be
possible to account for the patterns of disease in small
populations. However, it turns out that the basic
conventional compartmental SeIR models, in either
their deterministic or stochastic implementations, are
unable to capture the particular form of the epidemic
distributions seen in the Faroe Island measles case
returns and the possible reasons for this are discussed in
more detail below. Instead, we have a lattice-based
epidemic model which seems better able to reflect the
dynamics.

(a) A simple lattice-based model

The power law scaling phenomena observed in the
raw measles data are strongly suggestive of some
underlying scale-free dynamics. Whilst many examples
of scale-free patterns have been catalogued in experi-
ments and in the natural world it has only been in
recent years that it has become possible to discussion
mechanisms by which such patterns may be produced
(Bak et al. 1988; Chen et al. 1991; Solé & Manrubia
1995; Solé & Bascompte 1996). Many nonlinear
spatially extended dynamical systems exhibit power
law behaviour and we use a latter-based model,
recently used in discussions of forest-fire dynamics (Bak
et al. 1990; Grassberger & Kantz 1991; Drossel &
Schwabl 1992; Mosner et al. 1992; Christensen et al.
1993; Drossel & Schwabl 1993; Grassberger 1993;
Clar et al. 1994; Drossel & Schwabl 1994), to provide
a simple model for the spread of epidemics in small
isolated island populations. This is one amongst a
number of lattice epidemic models that have been
discussed recently, and is closely related to the model of
Johansen (1994, 1996).

The earliest attempt at formulating an epidemic
model using nearest-neighbour spread between indi-
viduals was undertaken by Bailey (1965, 1975),
motivated by the early work on percolation theory.
Mollison (1977) and Mollison & Kuulasmaa (1985)
later developed these early ideas proposing his ap-
proach as a general framework with which to describe
spatial heterogeneity in epidemic models. This has
culminated in the spatial contact model of Cox &

Phil. Trans. R. Soc. Lond. B (1996)
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Durrett (1988) and Durrett & Neuhauser (1991). An
extensive and insightful descriptions of this approach to
epidemic modelling and the role of spatial hetero-
geneity in epidemiological, ecological and evolutionary
systems can be found in Durrett & Levin (19944,
1994b) and Durrett (1995), where comparisons are
made between individual-based lattice models and
more conventional coupled differential equation
models. There are also related models of epidemic
spread through populations distributed on lattices by
Grassberger (1983), Cardy (1983) and Cardy &
Grassberger (1985). Their approach has been de-
veloped by Boccara & Cheong (1992), who demon-
strated the importance of population mixing on the
rate of epidemic spirad in spatially distributed popu-
lations, and later Rhodes & Anderson (19964, 1996¢).
Recently Hassell et al. (1991), Rohani & Miramontes
(1995) and Rand et al. (1995) have used the lattice
approach to study spatial host-parasite relationships
and the role played by spatial distribution in stabilising
otherwise unstable dynamics.

The lattice epidemic model we use is defined as
follows, using the same notation as Drossel & Schwabl
(1992); each site in the L x L lattice is in one of three
states: Empty, Occupied by a Susceptible or Occupied
by an Infective.

The lattice is updated synchronously at each time-
step using the following rules:

(1) Susceptibles who are on nearest-neighbour sites to
an Infective become Infective themselves.

(ii) Infectives become inactive and the site they occupy
becomes Empty.

(i) Susceptibles are introduced onto Empty lattice
sites with a probability p. Periodic boundary conditions
are used.

Essentially, these rules define a simple spatial S-I

model. It is amongst the simplest possible lattice-based
model of epidemic spread and, at best, is a caricature
of the real epidemiological processes taking place in the
population. A further rule can be added;
(iv) A new Infective can arise when a Susceptible is
spontaneously infected with a probability f. This
effectively correspond to an immigration term whereby
our lattice population is subject to infrequent infection
from external sources.

There are 43 epidemic events in the 58 years of the
time series, so we can place a lower bound on the
infective immigration term f of 0.74 year . It is
possible that infected index cases reach the islands
more often than this, but because they do not generate
any secondary infectives we cannot estimate their rate
of arrival. We make the assumption, therefore, that
infectives arrive on the islands as a Poisson process with
a mean rate of arrival no less than f.

For the Faroe Islands population of 25,000 at
equilibrium, with an average life-expectancy of 70
years, we expect approximately one new Susceptible to
appear each day (i.e. & 365 year™). This sets a lower
limit to the ratio of f/p to be 0.74/365 =~ 1/493. A
simulation is run for 130 years to run off transients
before data is recorded for the next 180 years. A value
of f/p =1/300 was actually used to get a reasonable
agreement for the overall number of epidemic events,
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Figure 5. (a) Time series of the monthly for the lattice-based
model. A sixty year (i.e. 720 month) interval of the time series
is shown. Setting a lattice size L = 250 gives an average
population of 25,000 on the lattice. (b) Epidemic size
distribution for the lattice-based model data (log-log plot).
The regression fit has r=—0.98. (¢) Epidemic duration
distribution for the lattice-based model data (log-log plot)
with » = —0.99.

and the dynamics of the model in figure 5a closely
resembles that seen in the Faroe Island data. The size
of the exponent & extracted from the model data, given
by the gradient of figure 54 is remarkably similar to the
exponent derived from the actual epidemiological
data; b4, =~ 0.25. In the distribution of epidemic
durations, the lattice model underestimates the number
of larger epidemics and the resulting exponent from

Phil. Trans. R. Soc. Lond. B (1996)

figure 5¢ is ¢, =~ 1.27. 1f, however, we were to
calculate the gradient by using only those points that
appear to be following a scaling relation (up to 4
months) we find ¢;,,,,., =~ 1.0, which is somewhat nearer
the value of ¢ extracted from the Faroe Island data.
The connectedness of the spatial distribution of the
population on the lattice seems to reflect the social
networks that exist in real communities and it appears
essential to include this factor in order to accurately
describe the epidemiological dynamics. A second
important factor in generating this result is the fact
(which we clearly observe in the Faroe Island data)
that there is a separation of time scales for the
replenishment of susceptibles and the immigration of
infectives i.¢. f/p €1 as emphasised by Drossel &
Schwabl (1992, 1993, 1994).

These simulations indicate that a lattice model seems
able to capture the dynamics of epidemic spread in the
population. In a sense this is not surprising, since
experience with other critical phenomena tells us that
the simplest reduced models of a given physical
situation that contain the dominant interactions often
yield the correct exponents (Binney et al. 1993). For
this to work the system needs to be in the vicinity of a
critical point and recent renormalization-group studies
(Loreto et al. 1995) suggest that the lattice simulations
we use here are close to such a critical point. Our
results suggest that this idea of universality might apply
in biological systems as well. Universality also tells that
exponents are often robust to changes of the details of
the underlying model which draws us to speculate that
the exponents 4 and ¢ might also apply to other simple
communicable infectious diseases, such as influenza. As
discussed by Durret (1995) and Solé & Bascompte
(1996), the introduction of this concept into biology
might prove fruitful in future work on modelling the
complex dynamical systems that often arise. It seems
that the lattice approach provides a natural framework
in which to describe the spatio-temporal clustering of
epidemics often associated with sudden outbreaks of
communicable disease in susceptible populations, and
we believe this is the first example of the use of a lattice-
based method to provide quantitative insight into the
dynamics of a real epidemiological data set.

(b) A stochastic seir simulation

The measles infection case returns for the health
districts in many countries of the developed world are
generally quite detailed and long-running and have
been extensively analysed and compared with the
results of model calculations. This work has con-
siderably furthered the understanding of the influence
of various eterogeneities, such as age-structure
(Schenzle 1984 ; Bolker & Grenfell 1993), seasonality
in contact rate (Olsen et al. 1988; Olsen & Schaffer
1990; Grenfell 1992) and the effects of spatially
distributed populations (Bolker & Grenfell 1995), as
well as contributing to the debate over the possible
effect of nonlinear dynamics in biological systems
(Olsen et al. 1988; Olsen & Schaffer 1990; Grenfell
1992; Tidd et al. 1993). Central to this work has been
the standard compartmental seir model (Anderson &
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Figure 6. {a) Time series of the monthly for a stochastic ser
model. N = 25,000, 4 =1/70 years™, y =1/7 days™, 8 =
1.7 days™ and R, = 14. (b) Epidemic size distribution for the
seiR model data (log-log plot). (¢) Epidemic duration
distribution for the sEirR model data (log-log plot).

May 1991). The heterogeneities thought to be par-
ticularly relevant to any epidemiological situation can
be straightforwardly grafted onto this mathematical
structure.

The total population under consideration is divided
up into four compartments; Susceptibles (those who
have not yet been infected, but are not yet infectious),
Infected (those susceptibles who have been infected,
but are not yet infectious), Infected (those who were
previously in the exposed class and are now able to

Phil. Trans. R. Soc. Lond. B (1996)
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infect other susceptibles) and Recovered (those who
have been infected, have now recovered and are
immune to further reinfection). Susceptibles are born
into the population at a certain rate, and we assume
there is natural mortality from each of the com-
partments at a rate which maintains the overall
population at a constant level. The following equations
describe the time evolution of the population of each of
the compartments.

dS/dt = uN—uS— pSI (10)
dE/dt = pSI—uE—yE (11)
dljdt = yE—pul—681+v (12)
dR/di = 81— uR (13)

The total population S+ E+7+R = N. The average
life span of individuals is given by g™, 4 is the contact
rate between susceptibles and infectives, y ™' is the
average incubation period and 8 is the average
infectious period. The term v is a small immigration
factor representing the occasional introduction of
infectives into the system from outside, as happens in
the island situation.

For the Faroe Islands, we assume a population of
25,000, an average life span to be 70 years, the
incubation is taken to be 7 days and the infectious
period is also 7 days. From equations 10 to 13 it is
possible to define the contact rate of £ in terms of a
basic reproductive rate R,

oR,
pa (14)

The basic reproductive rate can often be estimated
from age-serological profiles (Anderson & May 1991),
thus giving an indirect estimation of £. Typically, for a
population like the Faroes, the reproductive rate for
measles is around 14. Also, because the populations we
are considering here are small it is appropriate to
utilize the stochastic Monte-Carlo implementation of
the above equations (Olsen et al. 1988).

The time-series for the monthly measles case returns
from the seir simulation is shown in figure 64 for a
representative 60 year interval, showing a qualitatively
similarity with the time series for the island popu-
lations. Here we have set the ratio of immigration to
birth rate to be identical (1/300) to that in the lattice-
based simulations shown above. However, the dis-
tribution of epidemic sizes and durations shown in
figure 64 and 6¢ do not show the scaling observed in
the Faroe Island data set. Changing the immigration
rate, v, and altering the reproductive rate, R,, does not
serve to improve the agreement with the Faroe Islands
distributions.

It is possible to add seasonality in the contact rate.
We noted that more cases appeared during the winter
months, so, following earlier studies on the effect of
seasonality, we assume

B = Poll + By cos(2mt)} (15)

B, is given by the right-hand side of equation 14. We
varied S, between 0—0.3, but this had negligible
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quantitative effect on the distribution of epidemics,
making only extremely small differences to the graphs
in figures 64 and 6¢.

Additionally, figure 24, suggested a slight excess in
the number of epidemics being initiated in the summer
months, so we can seasonally force the immigration
rate of infectives too. Choosing a cosinusoidsal forcing
function as in equation 15, did little to reduce the
number of larger epidemics as compared with the
smaller epidemics. Thus the distributions retained a
concave shape even for extremely strong forcing.

It appears that the stochastic sEIR simulations we
have described are not able to accurately capture the
specific form of the epidemic size and duration
distributions. Consequently we are not able to
theoretically confirm the scaling exponents 4 and ¢. In
other calculations it turns out, the rate of immigration,
v, required to match the observed total number of
epidemic events is twice that used in the lattice-based
model. The reason for these discrepancies is probably
connected to the fact that the seIr equations, based as
they are on homogeneous mass action based as they are
on homogeneous mass action based mixing of suscep-
tibles with infectives, overestimate the rate at which
infectives can mix amongst the susceptible population.
This results in an over-production in the number of
larger epidemics which gives the size and duration
distributions their characteristic concave shape. We
have preliminary evidence which suggests that the
introduction of a metapopulation structure onto the
total population results in a diminution of the larger
epidemics, thus leading to a somewhat straighter
scaling distribution (Ferguson, unpublished data).
Additionally, an extremely important heterogeneity in
measles dynamics in large urban populations is age
structure (Schenzle 1984; Bolker & Grenfell 1993).
This is important because disease spread amongst
school-age children is dominant in the dynamics and at
the beginning of each academic year fresh susceptibles
are introduced into the school system to be exposed to
infection. In contrast, the smaller Faroe Island popu-
lation measles epidemics are not of a long duration and
person-to-person spread is the dominant route for
transmission rather than through cohorts of suscep-
tibles entering a school environment which results in
the maintenance of endemic infection. In larger cities
measles is usually regarded as a disease of childhood
which most children will get at some time, whereas in
largely susceptible island communities, measles out-
breaks afflict all age-groups. Consequently we have not
allowed for age-structured transmission in either the
lattice or the sEIR models, though a age-structured SEIR
model (Ferguson, unpublished data) has been show to
behave little differently than a homogeneous model.

6. ESTIMATING EPIDEMIC OUTBREAK
FREQUENCIES

The observation of the power laws also allows us to
estimate how often epidemics of certain sizes and
durations might occur in a given period of time. To
calculate the average number of epidemics, E, that (in
a 58 year interval) infect, for example, more than 10
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individuals but less than 100 individuals we integrate
equation 5 between the lower limit, 5, and the upper
limit s,,.

E= J " as10ds (16)
S1
so
a _
E= ;[xl"’—sub] (17)
For the Faroe data, b = 0.28 and % =43, so

E = 43[5\;0.28_£;0,28] (18)

If s, = 10 and 5,9 = 100, then the number of epidemics
we expect between these limits in the time series, £ =
10.7. For the Faroe data, the observed number of
epidemics in the size range £, = 9, so the agreement
is quite good. In the event that the population
parameters remained the same for the Faroes we can
say that in the next 60 years we would expect there to
be around eleven distinct epidemics that affect greater
than 10 people and less than 100 people. The same
analysis can be done for the average number of
epidemics in a given range of durations.

Whilst we are able to make estimate of the
frequencies of epidemics in given size and duration
bounds, it is not possible to say when (or where) such
epidemics will occur (rather like earthquake pre-
diction), so this is a rather weak form of time series
prediction.

7. DISCUSSION

Our results suggest the existence of well defined scaling
laws for the size and duration of measles epidemic
outbreaks in the Faroe Islands. The distributions are
better fit with power law functions than exponential
ones. Though we do not discuss it in this paper, measles
case returns for Bornholm and Reykjavik show similar
scaling. This places the dynamics of Bartlett Type I11
measles epidemics in small isolated populations, subject
to infrequent infection from outside, in the same class
as other spatially extended non-linear dynamical
systems, where scaling is also observed. These data sets
present a picture of what happens when a largely
susceptible population is perturbed by the occasional
introduction of infection. On the whole, small short
duration epidemics predominate with fewer large, long
duration epidemics. In practice, this facilitates a form
of prediction in which we can calculate the frequency
of occurrence of epidemics of given size and duration.
Basic forms of the conventional stochastic selrR model
are shown to overestimate the number of large
epidemics and cannot provide reasonable estimates of
the scaling exponents. However, a simple spatial model
can generate similar exponents to those seen in our
data analysis.

At present it is not possible to verify if the power laws
are a general phenomenon in the dynamics of measles
infection. The exponents, b and ¢, have been shown to
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be remarkably similar in three different geographical
locations (Rhodes & Anderson 19964) but it is not yet
known if they can be applied in all epidemiological
contexts. Most reasonably accurate measles data are
for large populations in urban centres of the developed
world. However, with high vaccination coverage in
most developed countries, such populations now
contain insufficient susceptibles to maintain chains of
transmission without introduction of infection by
immigrants or visitors. The lower law phenomenon is
therefore likely to be of relevance in both the study of
infrequent outbreaks of measles in highly vaccinated
communities and in isolated low density rural popu-
lations in developing countries. We believe that lattice
based models of infectious disease open up many new
lines of research on how the behaviour of individuals
influences the pattern of infection and disease in
populations that cannot be easily addressed using
conventional mathematical models of disease spread
based on population aggregations or compartments.
Our analysis suggests that very simple behavioural and
biological rules induce measurable epidemiological
patterns and hence provides a new tool for epidemio-
logical prediction and interpretation.
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